
Holtek C Compiler V3 FAQ

Revision: V1.80 Date: September 13, 2021

Rev. 1.80 2 September 13, 2021 Rev. 1.80 3 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Notice

1. This document may be not the latest version. As Holtek's tools and documents will continue to be updated, some
dialog boxes and tool descriptions in actual use may differ from the contents of this document. For the most up-
to date information, visit the Holtek website at:

http://www.holtek.com.tw/en/mcu_tools_users_guide

2. It is assumed that the reader already has the following basic qualities:

• Knows how to write C programs

• Has already read and understood the target MCU datasheet

Rev. 1.80 2 September 13, 2021 Rev. 1.80 3 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Table of Contents
Part I V3 Introduction ... 5

1.1 V3 Version ..5
1.2 What are the increased functions in the new version ...5
1.3 What are the V3 user’s guides? ...6
1.4 What are the MCUs that V3 does not support? ...6
1.5 What are extended instructions? ..7

Part II Differences between V3 and V2 .. 8
2.1 What are the syntax differences between V3 and V2 compared with V1, V2 and standard C?

..8
2.2 What are the advanced functions of V3 over V2? ..8
2.3 Common errors when changing V2 programs to V3 programs ..8

Part III Special syntax and usage of V3 .. 11
3.1 How to define a variable for the specified bank? ... 11
3.2 How to define a function for the specified address? .. 11
3.3 How to use mixed language in V3? .. 11
3.4 V3 Code Generator .. 11

Part IV Common errors, warnings and solutions in V3 13
4.1 error “multi-ram-bank should be equipped with mp1” ..13
4.2 error "internal compiler error:xxxx” ...13
4.3 error (L1038) “RAM (bank0) overflow, memory allocation fails for section ….”13
4.4 error (L1038) “ROM/RAM (bank*) overflow, memory allocation fails for section ….”13
4.5 warning(L3010) (absolute address: xxh, length:x) is overlay with (absolute address: xxh,

length: x) ...13
4.6 warning (L3009): Same sub function exists between ISR(04H) CMG and MAIN CMG: _func

..13

Part V Common questions and solutions in V3 ... 14
5.1 How to use bit variables in V3? ..14
5.2 How to use external defined bit variables in V3? ...14
5.3 Solution for when variables are cleared to 0 after a program reset?14
5.4 How to quote the specified address in other files? ...15
5.5 For MCUs which have an EEPROM write limitation (need to write “set wren, wr, flag”

continuously), how to use V3 to write to the EEPROM? ..15
5.6 Notes for assigning a variable to a bit flag using the V3 Compiler17
5.7 Notes for using the ROM BP in the V3 Compiler ...18
5.8 Mixed language using ROM BP notes ...18
5.9 How to use the DOS command to compiler the C project? ..19
5.10 Notes for using the table read in the ASM files of mixed language program19
5.11 Notes for using inline assembly in interrupt ..19
5.12 How to solve when modifying the const values in other ways (such as programming), the

 result of execution unchanged?..20
5.13 Notes on the use of inline assembly language ...20

Rev. 1.80 4 September 13, 2021 Rev. 1.80 5 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

5.14 The address of the absolute address variable is occupied by other variables20

Part VI Common optimization problems in V3 ... 21
6.1 Variables debug messages cannot be seen on the watch window after using the V3

optimization parameters? ...21
6.2 For interrupts and the general function access of the same global variable are the related

statements of this global variable optimized? ...21
6.3 V3 optimization functions and its effect on debug? ..21
6.4 Line number error when using V3 compiler to debug? ..22
6.5 How to solve the problem when code which is used for delay is optimized when using the V3

compiler? ..23
6.6 How to deal with the situation when inline assembly is optimized?24
6.7 When select the optimization parameters , the delay time is changed?24

Part VII Fixing the Known Problems in C Compiler .. 25
7.1 There was an error when the total size of the const variable used by the program was 64

pages. ...25
7.2 When the range of the address specified by the Const exceeds 64pages, the address

specified by the _CROM2PROM is invalid. ..25
7.3 In a few cases, internal error occurs when a function is called within a do/while statement

and if/else is used. ..25
7.4 The debug of the structure bit-field displays error information. ..26
7.5 When local bit and switch are used at the same time, internal error will be reported26
7.6 In a few cases, using global bit may produce incorrect assembly syntax.27
7.7 The function parameter with multiplication or division operation is performed incorrectly ...28

Rev. 1.80 4 September 13, 2021 Rev. 1.80 5 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part I V3 Introduction

1.1 V3 Version
A:

Release date V3 Compiler version IDE version
2012/12 C Compiler V3.10 HT-IDE30007.7
2013/10 C Compiler V3.20 HT-IDE30007.8
2014/03 C Compiler V3.30 HT-IDE30007.82
2014/09 C Compiler V3.31 HT-IDE30007.85
2015/01 C Compiler V3.40 HT-IDE30007.86
2015/11 C Compiler V3.41 HT-IDE30007.89
2016/06 C Compiler V3.42 HT-IDE30007.90
2016/12 C Compiler V3.50 HT-IDE30007.93
2017/05 C Compiler V3.51 HT-IDE30007.94
2017/12 C Compiler V3.52 HT-IDE30007.96
2018/07 C Compiler V3.53 HT-IDE30007.97
2018/11 C Compiler V3.54 HT-IDE30007.98
2020/09 C Compiler V3.59 HT-IDE30008.04

1.2 What are the increased functions in the new version
A:

V3.51, V3.52, V3.53, V3.54, V3.59

• Modify bugs.

V3.50

• Support bit data type (more details can be obtained in chapter 2.2.11 of the <C Compiler V3
user’s guide>))

• Modify bugs.

V3.42

• Support the function of hardware multiplication and division (when IC has the MDU registers,
more details can be obtained in chapter 2.2.10 of the <C Compiler V3 user’s guide>)

• Modify bugs.

V3.41

• Modify when without the option –Os, part of MCUs fail to write EEPROM

• Modify bugs

V3.40

• Modify all known bugs of V3.31

• Optimize the RAM space allocation of extended instruction MCU, more details can be obtained
in chapter 10.1 of <C Compiler V3 user’s guide>

V3.31

• Support for when the entry function and the main function are in different files.

• Modify bug – run error when the function parameter is const array

• Supports the internal function: GCC_DELAY(n), more details can be obtained in chapter 2.2.3 of
the <C Compiler V3 user’s guide>

Rev. 1.80 6 September 13, 2021 Rev. 1.80 7 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

V3.30

• Supports to specify the program entry function, more details can be obtained in chapter 2.2.9 of
the <C Compiler V3 user’s guide>

• Modify the startup function to avoid the use of the TABRD instruction

• Causes an error when a function parameter type is missing

V3.20

• Supports floating/double data type and C Standard libraries

• Supports MCUs that have extended instructions, such as the HT66F70A

• Supports const variable to specify address, more details can be obtained in chapter 2.2.7 of the
<C Compiler V3 user’s guide>

• Supports function to specify address, more details can be obtained in the <C Compiler V3 user’s
guide> section 2.2.8

1.3 What are the V3 user’s guides?
A: http://www.holtek.com.tw/en/mcu_tools_users_guide

<C Compiler V3 user’s guide>

<Holtek C Compiler V3 FAQ>

<Standard library user's guide>

1.4 What are the MCUs that V3 does not support?
A: V3 does not support MCUs that the MP register width less than 8 bits. The following list shows these

devices. Extended instruction MCUs are only supported by the V3.20 version or above.

Rev. 1.80 6 September 13, 2021 Rev. 1.80 7 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

MCU name
HT45F2Y
HT45R04
HT45R0G
HT45R34
HT45R35
HT45R35V
HT45R36
HT45F39
HT46C22
HT46R22
HT46C46E
HT46R46E
HT46C47
HT46R47
HT46C47E
HT46R47E
HT46C48AE
HT46R48AE
HT46C62
HT46R62
HT46F46E
HT46F47E
HT46F48E
HT46R002
HT46R003
HT46R003B
HT46R02
HT46R004
HT46R005
HT46R01A
HT46R064
HT46R064B
HT46R064D
HT46R064G
HT46R12A
HT46R32
HT46R321
HT46R322

HT46R46
HT46R46-H
HT46R47-H
HT46R48A
HT46R51
HT46R52
HT46R53
HT46R54
HT46R71D
HT46R71D-1
HT46R72D-1
HT46R72D-1A
HT46R73D-1
HT46R73D-1A
HT46R74D-1
HT46RU22
HT46R92
HT48C05
HT48R05A-1
HT48C06
HT48R06A-1
HT48C062
HT48R062
HT48C10-1
HT48R10A-1
HT48C30-1
HT48R30A-1
HT48CA0
HT48RA0A
HT48CA0-1
HT48RA0-1
HT48CA0-2
HT48RA0-2
HT48CA0-3
HT48RA0-3
HT48CA6
HT48E06
HT48E10

HT48E30
HT48F06E
HT48F10E
HT48F30E
HT48R002
HT48R003
HT48R005
HT48R006
HT48R01A
HT48R02
HT48R063
HT48R063B
HT48R064
HT48R064B
HT48R064D
HT48R064G
HT48R07A-1
HT48R08A-1
HT48R09A-1
HT48R52
HT48R52A
HT48R53
HT48RA0-5
HT48RA0-6
HT49C10-1
HT49C30-1
HT49R30A-1
HT49C30L
HT49CA0
HT49RA0
HT49RA0-6
HT49R10A-1
HT56R22
HT56R62
HT66F002
HT66F003
HT66F03
HT66F03C

HT66F03M
HT66F03T3
HT66F13
HT66F20
HT66F23D
HT66F30
HT66FB30
HT66FU30
HT68F002
HT68F003
HT68F03
HT68F03C
HT68F03M
HT68F03T3
HT68F13
HT68F20
HT68F30
HT68FB30
HT68FU30
HT82J97A
HT82J97E
HT82K72A
HT82M39
HT82M39B
HT82M72A
HT82M98
HT82M99A
HT82M99E
HT82M99AE
HT82M99EE
HT83020
HT83F10
HT83F20
HT83F40
HT83F60
HT83F80
HT83P00-1
HT83R00

1.5 What are extended instructions?
A: Any the extended instructions will be preceded by the letter ‘L’. For example: LMOV and LSET

which have a length of 2 words. Whether an MCU has extended instructions or not can be determined
by looking at the datasheet. Each extended instruction occupies one cycle more than a general
instruction.

Rev. 1.80 8 September 13, 2021 Rev. 1.80 9 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part II Differences between V3 and V2

2.1 What are the syntax differences between V3 and V2 compared with V1, V2 and
standard C?
A: The syntax differences between V3 and V2 are absolute address variables, interrupt syntax and

integrated assembler. More details can be obtained in the user’s guide <C Compiler V3 user’s guide>
section 2.2

The comparison table for V3, V2, V1 and C are in the user’s guide <C Compiler V3 user’s guide>
chapter 4.

2.2 What are the advanced functions of V3 over V2?
A:

V3 V2

Global Variables Supports initialization, refer to
<C Compiler V3 user’s guide> section 2.2.4 Does not support initialization

Const Variables

supports a maximum size of 64 pages
supports extern const
supports Const Variables Specified Address,refer
to <C Compiler V3 user’s guide> section 2.2.7

There may be an error when the
size is more than 1 page.

Array supports more than three-dimensional arrays Only supports less than two-
dimensional arrays

ISR can call a function, refer to
<C Compiler V3 user’s guide> section 2.2.1 Is not able to call a function

Function Support specify the program entry function,refer
to <C Compiler V3 user’s guide> section 2.2.9

Can not specify the entry
function

2.3 Common errors when changing V2 programs to V3 programs

2.3.1 ISR warning
e.g.
#pragma vector Int_isr @ 0x04
void Int_isr() {}

warning: ignoring #pragma vector Int_isr [-Wunknown-pragmas]

Solution:

Use the correct interrupt grammar:
void __attribute((interrupt(0x04))) Int_isr() {}

More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section 2.2.1

Note:

i: If the warning is not amended, the program can continue to be compiled, but the compiler will
process the function as a normal function, not as an interrupt service program.

ii: If the other keywords of #pragma, such as rambank/function etc., are used in V3, it will issue a
warning and indicate the function invalid.

Rev. 1.80 8 September 13, 2021 Rev. 1.80 9 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

2.3.2 Inline assembly error
e.g.
#asm
nop
#endasm

error: invalid preprocessing directive #asm
error: invalid preprocessing directive #endasm

Solution:
Use the correct inline assembly grammar:asm(“nop”);

More details can be obtained in <C Compiler V3 user’s guide> section 2.2.5

2.3.3 Bit variable error
e.g.bit a;

error: unknown type name ‘bit’

Solution: use the HT-IDE3000 7.93 version or above

2.3.4 Bit flag error
e.g. _40_1 = 1;

error: ‘_40_1’ undeclared (first use in this function)

Solution:

a. Use the structure bit-field to define the bit flag
 bit_type bit_var __attribute__ ((at(0x40)));
	 #define	_40_1	bit_var.bit1

More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section 2.2.3

b. Use the bit type:
	 static	volatile	bit	flag1	__attribute__	((at(0x40),bitoffset(1)));	

More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section 2.2.11

2.3.5 Internal function error
e.g. _delay(2);

Error(L2001): Unresolved external symbol ‘__delay’ in file

Solution:

Modify it to:
#include	“ht66f50.h”
GCC_DELAY(2);

More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section 2.2.3

2.3.6 Absolute address variable error
e.g. unsigned char a @ 0x40;

error: stray ‘@’ in program
error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before numeric constant

Solution:

Modify it to:
volatile static unsigned char var_name __attribute__ ((at(0x40)));

More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section 2.2.2

Rev. 1.80 10 September 13, 2021 Rev. 1.80 11 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

2.3.7 Function pointer error
e.g.
void FileFunc(){}
void EditFunc(){}
void main()
{
 typedef void (*funcp)(void);
 funcp pfun= FileFunc;
 pfun();
 pfun = EditFunc;
 pfun();
}

error: incompatible types when initializing type ‘funcp’ using type ‘void()’
error: incompatible types when assigning to type ‘funcp’ from type ‘void()’

Solution: V3 does not presently support function pointer.

Rev. 1.80 10 September 13, 2021 Rev. 1.80 11 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part III Special syntax and usage of V3

3.1 How to define a variable for the specified bank?
A: If the MCU without extended instructions, it can only define a variable for the specified address, such

as:

volatile static unsigned char var_name __attribute__ ((at(0x140))); More details can be obtained in
the user’s guide <C Compiler V3 user’s guide> section 2.2.2

If the MCU with extended instructions, then there is no need to specify the bank, the linker will
assign an arbitrary bank automatically for a variable.

3.2 How to define a function for the specified address?
A: This function is only supported by the IDE 7.8 version or above, grammar:

char __attribute__((at(0x373))) foo (char parm){}

This means that to specify the function foo at the address 0x373

More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section 2.2.6

3.3 How to use mixed language in V3?
A: Refer to <C Compiler V3 user’s guide> section 2.5

3.4 V3 Code Generator
In order to make it easier for users to use the V3 specific syntax, the IDE3000 v7.83 or later versions
supports a "V3 code generator" tool. This is located in the menu → tool → V3 code generator. It can
output the bit variables, interrupt grammar, absolute addresses of variables, the internal assembler,
delay function and bank specify variables. More details can be obtained in the <HT-IDE3000
manual> section "V3 code generator".

Rev. 1.80 12 September 13, 2021 Rev. 1.80 13 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Rev. 1.80 12 September 13, 2021 Rev. 1.80 13 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part IV Common errors, warnings and solutions in V3

4.1 error “multi-ram-bank should be equipped with mp1”
A: Confirm that that the MCU has extended instructions. If it is, then use the IDE 7.8 version or above.

4.2 error "internal compiler error:xxxx”
A: Compiler internal error - contact Holtek.

4.3 error (L1038) “RAM (bank0) overflow, memory allocation fails for section ….”
A: For without extended instruction architecture MCUs, the C Compiler will assign the variables to

RAM bank0 (extended instruction MCUs can assign the variables to any bank automatically) by
default. When bank0 is full, RAM bank 0 overflows and the following message will be generated:

• Check the data type is correct or not, especially the programs from V1 C Compiler

• If it is a multiple RAM bank MCU, locate the global variables to other banks manually - refer to 3.1

4.4 error (L1038) “ROM/RAM (bank*) overflow, memory allocation fails for section
….”
A: When there is not enough ROM or RAM space, the solution is as follows:

• Check if the optimised parameter -Os is enabled or not, refer to the <C Compiler V3 user’s
guide> section 2.1.4

• Delete unnecessary programs.

4.5 warning(L3010) (absolute address: xxh, length:x) is overlay with (absolute
address: xxh, length: x)
A: There are two situations which may cause these warnings:

• The same absolute address variables are defined many times in different files, such as the variable
var is defined in a.h:
static volatile unsigned char var __attribute__ ((at(0x180)));
When t1.c and t2.c both include a.h simultaneously, then a warning message will be generated.
In this case, the warning message can be ignored or set the option to avoid the warning message.
Refer to <C Compiler V3 user’s guide> section 2.1.5

• The defined addresses of different variables overlap, shown as follows, the addresses of _b and _
a overlap, _b needs to be defined in the address 0x0142.
DEFINE_SFR(unsigned	int	_a,	0x0140);
DEFINE_SFR(unsigned	char	_b,	0x0141);		 //error

4.6 warning (L3009): Same sub function exists between ISR(04H) CMG and MAIN
CMG: _func
A: Exist the same sub function(_func) between the interrupt service routine (04H) and the main function,

solution:

• Avoid the common calling

More details can be obtained in chapter 2.2.1 of <C Compiler V3 user’s guide>

Rev. 1.80 14 September 13, 2021 Rev. 1.80 15 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part V Common questions and solutions in V3

5.1 How to use bit variables in V3?
A: bit flag1; (More details can be obtained in the user’s guide <C Compiler V3 user’s guide> section

2.2.11).

5.2 How to use external defined bit variables in V3?
A: extern bit flag1;

5.3 Solution for when variables are cleared to 0 after a program reset?
A: IDE7.8 version supports a way in which variables are not initialized: the option “Uninitialized global/

static…” does not need to be checked.

Rev. 1.80 14 September 13, 2021 Rev. 1.80 15 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

5.4 How to quote the specified address in other files?
A: The variables (not const) which are specified addresses need to be defined as “static”. If the action

scope is only in the current file, it can be defined in the header file. If other files need to use it, then
this header file needs to be included directly. Such as:

//Define_var.h
static	volatile	unsigned		var1		__attribute__	((at(0x180)));
//test1.c
#include	“Define_var.h”
void	foo1()
{
	 var1	=	1;
}
//test2.c
#include	“Define_var.h”
void foo2()
{
	 var1	=	2;
}

Note: If it is a const variable, then there is no need for it to be defined as static, extern can be used
instead, such as:
//test1.c
const	int	__attribute__((at(0x3400)))	bb[3]={1,2,3};
//test2.c
extern const int bb[3];
int b;
void fun()
{
 b=bb[2];
}

5.5 For MCUs which have an EEPROM write limitation (need to write “set wren, wr,
flag” continuously), how to use V3 to write to the EEPROM?
A:

i: In V3, _rden and _rd are in bank1, using extended instructions, is different from the specification
described in the datasheet.

ii: For this function that has strict requests to instructions, it is recommend to use the internal
assembler for its implementation. This is because it is not confirmed that, if C language is used, it
will translate the programs is in a specific way.

iii: To get consecutive instructions, the program in V3 should be changed as follows:

Rev. 1.80 16 September 13, 2021 Rev. 1.80 17 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Rev. 1.80 16 September 13, 2021 Rev. 1.80 17 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

5.6 Notes for assigning a variable to a bit flag using the V3 Compiler
Example:
unsigned	char	flag;
_pa2=flag;

The asm code: not:
CLR PA2
SZ _flag
SET PA2

 SZ _flag
 JMP L1
 CLR PA2
 JMP L2
L1:
 SET PA2
L2:

Description:

The compiler is only interested in the results of the calculation process, to reduce the output of
instructions, the compiler will translate the left instructions.

C and assembly language are different, a statement not only translation of an instruction, so before
the end of the statement is executed, the calculation is not complete.

Impact:

No matter what the value of the flag is, PA2 will be the first CLR, if an interrupt occurs and the
interrupt is useful to the PA, it will affect the results.

Solution:

• Disable the interrupt before assigning to a bit flag, then enable it at the end of the calculation

More generally:

For calculation of a multi-byte variable, if an interrupt is useful to it, before calculation unfinished
are allowed to enter an interrupt.

Rev. 1.80 18 September 13, 2021 Rev. 1.80 19 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

5.7 Notes for using the ROM BP in the V3 Compiler
For multi ROM BANK MCUs:

When using C language, users do not need to set the ROM BP. The Linker will set the ROM BP
automatically. If users modify the ROM BP in the project, the programs will probably have an error.
When setting up the RAM BP, users should also be careful not to modify the ROM BP.

When use mixed language:

In the C function call assembly section, it is necessary to use C language or inline asm (fcall),

In the assembly section call C function, it is necessary to setup the ROM BP before the call function
and restore it later.

Example:
;;Test1.asm
extern _fun2:near
public	_fun1
_fun1	.section		‘code’
_fun1	proc
mov	a,	bank	_fun2
mov	[04H],a		;;if	ROM	BP	at	04h
call _fun2
mov	a,bank_fun1
mov	[04H],a
_fun1	endp
//Test2.c
extern	void	FUN1();
//or		asm(“extern	_FUN1:near”);
void main()
{
	 FUN1();
	 //or	asm(“fcall	_FUN1”);
}
void fun2()
{}

5.8 Mixed language using ROM BP notes
Refer to section 5.7.

Rev. 1.80 18 September 13, 2021 Rev. 1.80 19 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

5.9 How to use the DOS command to compiler the C project?
The options of compiler, assembler, linker refer to the appendix C of <V3 C Compiler user’s guide>

Example:

a. environment variable settings:
set	HTCFG=C:\Program	Files\Holtek	MCU	Development	Tools\HT-IDE3000V7.x\MCU
set	HTBIN=C:\Program	Files\Holtek	MCU	Development	Tools\HT-IDE3000V7.x\BIN
set	HTINCLUDE=C:\Program	Files\Holtek	MCU	Development	Tools\HT-IDE3000V7.x\INCLUDE_V3
set	HTLIB=C:\Program	Files\Holtek	MCU	Development	Tools\HT-IDE3000V7.x\LIB

b. compile the .c files
…\hgcc32.exe		t1.c	–g	–Os	–I	“%HTINCLUDE%”	-o	t1.asm
…\hgcc32.exe		t2.c	–g	–Os	–I	“%HTINCLUDE%”	–o	t2.asm

c. assemble the .asm files
…\hasmgcc32.exe	/hide=12345678	/chip=HT66F50	/case	/z	“t1.asm”
…\hasmgcc32.exe	/hide=12345678	/chip=HT66F50	/case	/z	“t2.asm”

d. link the all .obj,.lib files to .tsk
…\hlinkw32.exe	/MCU=HT66F50	@	“C:\link-test.bat”

The content of link-test.bat:
“t1.obj”+
“t2.obj”,
“test.tsk”,
“test.map”,
“test.dbg”,
“libholtekgcc.lib”;

5.10 Notes for using the table read in the ASM files of mixed language program
If a project has C file and ASM file, then the EMI flag should be clear during the table read in the
ASM file .For example:
clr emi
tabrd r0
inc tblp
mov	a,tblh
…
set emi

5.11 Notes for using inline assembly in interrupt
If there is inline assembly in the interrupt functions and the inline assembly use the special
registers(such as MP, TBLP, TBHP, TBLH etc.),the user needs to save the register as follows:
DEFINE_ISR(isr04,0x04)
{

asm(“mov	a,[01h]”);	//	mp0	=	[01h]
asm(“mov	temp_mp0,a”);
asm(“mov	a,80h”);
asm(“mov	[01h],a	”);	
asm(“mov	a,[00h]”);
asm(“mov	a,temp_mp0”);
asm(“mov	[01h],a”);

}

Rev. 1.80 20 September 13, 2021 Rev. 1.80 21 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

5.12 How to solve when modifying the const values in other ways (such as
programming), the result of execution unchanged?

Example:
__attribut__((at(0x400)))
const	unsigned	char	array[]	=	{0,1,2,3,4,5,6,7};

Clear the area 400H~410H when programming, then execute temp=array[7]; the result of temp is 7.

Solution:

Define array[] and temp = array[7]; in different C files.

5.13 Notes on the use of inline assembly language
The variables/functions/registers/flags used in inline assembly language should follow the definition
of assembly language.

1. If the global variable/function is only used in the inline assembly language, the declaration should
be added, such as:
asm(“extern _a: byte”);
asm(“extern _func: near”);
void main()
{
 asm(“clr _a”);
 asm(“call _func”);
}

2. Register/flag should be defined before use, you can include the INC document, such as:
asm(“#include	HT66F60.INC”)
void main()
{
 asm(“CLR ACC”);
	 asm(“MOV	TBHP,A”);
 asm(“CLR C”);
}

3. Inline assembly language is case sensitive.

5.14 The address of the absolute address variable is occupied by other variables
If the absolute address variable is not used in the program, linker will assign other variables to this
address.

Rev. 1.80 20 September 13, 2021 Rev. 1.80 21 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part VI Common optimization problems in V3

6.1 Variables debug messages cannot be seen on the watch window after using the
V3 optimization parameters?
A: When using optimization parameters, variables may be deleted during optimization, therefore they

will not be shown in the debug messages. To view the variable values when debugging, the variables
can be defined as volatile temporarily, then deleted when debug is complete, such as:

volatile	int	i,	j,	k;

6.2 For interrupts and the general function access of the same global variable are
the related statements of this global variable optimized?
A: There is no call relationship between the general function and interrupt. The compiler does not know

when the interrupt occurs so it will influence the variables in the general function. Therefore it is
recommend to define this kind of variables as volatile, such as:

Flag is used in the interrupt ISR_INT0 and the main function, then to define it as volatile:
volatile	unsigned	char	flag;

Description: volatile: a type specifier. Designed to qualify the variables which are accessed or
modified by different functions. Variables defined using volatile cannot be omitted
because of compiler optimization.

Variables recommended to be defined with volatile: special registers, variables used in the interrupt
functions, variables defined for some certain function codes (such as a delay function)

6.3 V3 optimization functions and its effect on debug?
A: More details can be obtained in the <C Compiler V3 user’s guide> chapter 3

Rev. 1.80 22 September 13, 2021 Rev. 1.80 23 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

6.4 Line number error when using V3 compiler to debug?
A: The following cases may be shown:

a. Some statements may not be translated into code because of being optimized; there will also be no
debug messages.

b. Several statements are translated into the same code, but only one line number is shown.

In this case, it may affect debug, but the execution results are without errors. If it is not in above two
cases, then report.

Rev. 1.80 22 September 13, 2021 Rev. 1.80 23 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

6.5 How to solve the problem when code which is used for delay is optimized when
using the V3 compiler?
A: As follows:

Solution: Define the variable as volatile, as follows:

Rev. 1.80 24 September 13, 2021 Rev. 1.80 25 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

6.6 How to deal with the situation when inline assembly is optimized?
Example:
asm(“mov	%0,a”:”=m”(i));//asgn	the	ACC	register	to	i.

The variable i is unused in the following calculation, so the statement is optimised by the compiler.

After compiled:

Solution:

Use the volatile keyword:
asm	volatile	(“mov	%0,a”:”=m”(i));

6.7 When select the optimization parameters , the delay time is changed?
A: The execution time of the delay function depends on the numbers of instructions executed. When

select the optimization parameters, the instruction is reduced and then affect the delay time. The
program developers should pay attention to this and adjust the delay function,or use the built-in
function GCC_DELAY(n).

Rev. 1.80 24 September 13, 2021 Rev. 1.80 25 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Part VII Fixing the Known Problems in C Compiler

7.1 There was an error when the total size of the const variable used by the
program was 64 pages.

Problem Description
V3 Compiler supports const variables with a total size of no more than 64 pages, but it has been
found to execute errors when the size is equal to 64 pages.

How to avoid the problem
Most programs use less than 64 pages of const variables, and if need, define a small number of const
variables in assembly language.

7.2 When the range of the address specified by the Const exceeds 64pages, the
address specified by the _CROM2PROM is invalid.

Problem Description
For example, define table1 at the address 0x100, table2 at the address 0x7000. If specify the _
CROM2PROM at the address 0x7f00 in the project settings, the _CROM2PROM actual address will
be not at 0x7f00.
__attribute__((at(0x100)))
const	unsigned	char	table1[100]	=	{1,2};
__attribute__((at(0x7000)))
const	unsigned	char	table2[100]	=	{1,2};
int	a,b;
void main()
{
 a = table2[b];
}

How to avoid the problem
Fix the range of the const variable within 64 pages.

7.3 In a few cases, internal error occurs when a function is called within a do/while
statement and if/else is used.

Problem Description
In a few cases, internal compiler error will occur: in extract_insn, at recog.c:2154

For eaxmple:
unsigned int lg;
unsigned int getadr;
void Exel_d(void)
{
	 lg=100;
}
void	lookfor(void)
{
 unsigned char m2;
 unsigned char n2;
 do
 {
	 	 getadr=m2+n2;
	 	 getadr/=2;
 Exel_d();

Rev. 1.80 26 September 13, 2021 Rev. 1.80 27 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

 if(getadr<lg)
 {
 n2=getadr;
 }
 else
 {
 m2=getadr;
 }
	 }while(m2+1<n2);
}

How to avoid this problem
a. Define the getadr as volatile, or

b. Define the getadr, m2 and n2 with the same data type, unsigned char or unsigned int

7.4 The debug of the structure bit-field displays error information.

Problem Description
When the width of the structure bit-field is 8, the watch window value will display error (without
affecting the execution results), for example:
struct INA
{
	 unsigned	char	aa:1;
	 unsigned	char	ab:8;
};
volatile struct INA A;
void main()
{
	 A.ab	=	0x22;
	 A.ab	+=	0x33;
}

How to avoid the problem
When the bit-field width is 8, the number can be omitted, so it can be changed to:
struct INA
{
	 unsigned	char	aa:1;
 unsigned char ab;
};

7.5 When local bit and switch are used at the same time, internal error will be reported

Problem Description
In a few cases, internal compiler error will occur: in expand_movbi, at config/holtek/holtek.c:5501

For example:
typedef struct
{
	 unsigned	char	m1	:	1;
	 unsigned	char	m2	:	1;
}	BitsMotor_t;
BitsMotor_t	IO;
void	MotorDriverPulse(unsigned	char	Step)
{
	 bit	m1	=	0,	m2	=	0;
	 switch	(Step)

Rev. 1.80 26 September 13, 2021 Rev. 1.80 27 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

 {
	 	 case	1:
	 	 		m2	=	1;
	 	 		break;
 case 2:
	 	 		m2	=	1;
	 	 		break;
 case 3:
	 	 		m1	=	1;
	 	 		break;
 }
	 IO.m1	=	m1;
	 IO.m2	=	m2;
}

How to avoid the problem
a. Change switch to if/else, or

b. Define the m1 and m2 as global variables or

c. Define the m1 and m2 as structure bit-field.

7.6 In a few cases, using global bit may produce incorrect assembly syntax.

Problem Description
In a few cases, incorrect assembly syntax will occur, such as the following program, where the
output assembly variable _mode_oper_2[-1] will result syntax error.

For example:
unsigned char cnt_time_enable;
bit			way4_IO;
bit			way4_on;
extern volatile unsigned char cnt_state;
extern	unsigned	char	cnt_time_flag;
extern	unsigned	char	djrflag;
unsigned	char	float_uintcmp()
{
 return 0;
}
void mode_oper(void)
{
	 way4_IO=way4_on;	
	 if(float_uintcmp())
 {
	 	 way4_IO=~(way4_on);
 }
	 switch(cnt_state)
 {
	 	 case	0x10:	
	 	 	 cnt_time_flag=0;
	 	 	 break;
	 	 case	0x11:
	 	 	 cnt_time_enable=1;
	 	 	 break;
 }
}

Rev. 1.80 28 September 13, 2021 Rev. 1.80 29 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

void	djr_oper(void)
{
	 	 if(float_uintcmp())	djrflag=1;	
}

How to avoid the problem
a. Change switch to if/else, or

b. Define the way4_IO and way4_on as structure bit-field.

7.7 The function parameter with multiplication or division operation is performed
incorrectly

Problem Description
When the function parameter is more than one and the parameter (not the first parameter from
right to left) is with multiplication or division operation, MCUs that do not use the hardware
multiplication and division operation will be performed incorrectly.

For example:

a. func(a/b,1);

b. unsinged int temp = a * b; func(temp,1);

c. func(3,a%b,1);

How to avoid this problem
Define a volatile temp variable, calculate the expression first.

For example:

volatile unsigned int temp = a * b;

func(temp,1);

Rev. 1.80 28 September 13, 2021 Rev. 1.80 29 September 13, 2021

Holtek C Compiler V3 FAQ Holtek C Compiler V3 FAQ

Copyright© 2021 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time
of publication. However, Holtek assumes no responsibility arising from the use of
the specifications described. The applications mentioned herein are used solely
for the purpose of illustration and Holtek makes no warranty or representation that
such applications will be suitable without further modification, nor recommends
the use of its products for application that may present a risk to human life due to
malfunction or otherwise. Holtek's products are not authorized for use as critical
components in life support devices or systems. Holtek reserves the right to alter
its products without prior notification. For the most up-to-date information, please
visit our web site at http://www.holtek.com/en/.

	Part I V3 Introduction
	1.1 V3 Version
	1.2 What are the increased functions in the new version
	1.3 What are the V3 user’s guides?
	1.4 What are the MCUs that V3 does not support?
	1.5 What are extended instructions?

	Part II Differences between V3 and V2
	2.1 What are the syntax differences between V3 and V2 compared with V1, V2 and standard C?
	2.2 What are the advanced functions of V3 over V2?
	2.3 Common errors when changing V2 programs to V3 programs

	Part III Special syntax and usage of V3
	3.1 How to define a variable for the specified bank?
	3.2 How to define a function for the specified address?
	3.3 How to use mixed language in V3?
	3.4 V3 Code Generator

	Part IV Common errors, warnings and solutions in V3
	4.1 error “multi-ram-bank should be equipped with mp1”
	4.2 error "internal compiler error:xxxx”
	4.3 error (L1038) “RAM (bank0) overflow, memory allocation fails for section ….”
	4.4 error (L1038) “ROM/RAM (bank*) overflow, memory allocation fails for section ….”
	4.5 warning(L3010) (absolute address: xxh, length:x) is overlay with (absolute address: xxh, length: x)
	4.6 warning (L3009): Same sub function exists between ISR(04H) CMG and MAIN CMG: _func

	Part V Common questions and solutions in V3
	5.1 How to use bit variables in V3?
	5.2 How to use external defined bit variables in V3?
	5.3 Solution for when variables are cleared to 0 after a program reset?
	5.4 How to quote the specified address in other files?
	5.5 For MCUs which have an EEPROM write limitation (need to write “set wren, wr, flag” continuously), how to use V3 to write to the EEPROM?
	5.6 Notes for assigning a variable to a bit flag using the V3 Compiler
	5.7 Notes for using the ROM BP in the V3 Compiler
	5.8 Mixed language using ROM BP notes
	5.9 How to use the DOS command to compiler the C project?
	5.10 Notes for using the table read in the ASM files of mixed language program
	5.11 Notes for using inline assembly in interrupt
	5.12 How to solve when modifying the const values in other ways (such as programming), the result of execution unchanged?
	5.13 Notes on the use of inline assembly language
	5.14 The address of the absolute address variable is occupied by other variables

	Part VI Common optimization problems in V3
	6.1 Variables debug messages cannot be seen on the watch window after using the V3 optimization parameters?
	6.2 For interrupts and the general function access of the same global variable are the related statements of this global variable optimized?
	6.3 V3 optimization functions and its effect on debug?
	6.4 Line number error when using V3 compiler to debug?
	6.5 How to solve the problem when code which is used for delay is optimized when using the V3 compiler?
	6.6 How to deal with the situation when inline assembly is optimized?
	6.7 When select the optimization parameters , the delay time is changed?

	Part VII Fixing the Known Problems in C Compiler
	7.1 There was an error when the total size of the const variable used by the program was 64 pages.
	7.2 When the range of the address specified by the Const exceeds 64pages, the address specified by the _CROM2PROM is invalid.
	7.3 In a few cases, internal error occurs when a function is called within a do/while statement and if/else is used.
	7.4 The debug of the structure bit-field displays error information.
	7.5 When local bit and switch are used at the same time, internal error will be reported
	7.6 In a few cases, using global bit may produce incorrect assembly syntax.
	7.7 The function parameter with multiplication or division operation is performed incorrectly

